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The oscillator is the most generally useful and fundamental tool used in electronic music.  It is an example of a dynamical system in which the overall
state of a system, often described as a small number of state variables, evolves in time in a way that can make interesting musical sounds.  This talk
examines some classical and novel ways in which a dynamical system can give rise to novel acoustical behaviors that can be used musically.  Exam -
ples include strategies for coupling two or more oscillators together, and billiard-ball trajectories on non-rectangular tables.

Solid-state  and  vacuum-tube  audio  circuits  may  be
considered as having a state that changes in time.  The
state consists of the time-varying values of the charges of
all the individual capacitors (and  inductors, if any).  This
description  is  a  slight  idealization  since  other  circuit
elements also have state but at audio rates they usually
may  be  idealized  as  stateless,  leaving  just  a  relatively
small  number  of  time-varying  parameters.   It  is  often
possible to describe such a circuit as an explicit system of
differential equations:

x ' 1=f 1(x1 ,... , xN , t)
⋯

x 'N=f N( x1 , ..., xN ,t)

Here,  x1 , ... , xN are  the  charges  of  the  N
capacitors, and the functions f 1 , ... , f N describe how

each them change in time, depending on their  current
values and also possibly depending on the current time
t .  For example, a passive low-pass filter realized with

a resistor and a capacitor (an RC circuit) can be described
this way:

x ' (t)=a⋅(u(t )−x( t))

where the single state variable x is the output of the

filter,  u(t) is  the  filter’s  input,  and  a is  a

parameter that determines the roll-off frequency of the
filter.

There is a well-known approach to analyzing the behavior
of  this  particular  example  using  linear  systems  theory,
and  it  is  not  my intention  to  claim that  the  dynamic-
systems  view  of  this  particular  system  gives  any  new
insights about it, but instead, this well-known example is
a convenient one for illustrating the dynamical systems
point  of  view.   Seen  this  way,  the  state  space of  the

system  is  a  line  in  which  the  state  variable  x (t)
travels in time.  The velocity of travel is described as a
vector field.  At each point in the state space the velocity
is given by the vector with components f 1 , …, f n .

This is shown in Figure 1.

Figure 1. Low-pass filter considered as a dynamical system.  The input,
u(t), varies with time, and as a result the vector field that defines the
dynamical system does also.  The vector field also depends on the roll-
off frequency of the filter.

The vector field defines a  flow  through the state space,
and one imagines a particle floating in the state  space
and describing a  path through the state space with the
passage  of  time. Although  this  formulation  applies  to
systems that evolve continuously in time, it can be used
in discrete-time digital systems by approximation.  This is
one approach, for example, that has been taken to model
analog  circuits  such  as  the  Moog  ladder  filter
(Huovilainen 2004).  Two recent PhD graduates of UCSD
have explored ways of using continuous-time models to
give rise to design new digital musical instruments (Allen
2014 ; Medine 2016).

The functions defining the vector field (flow) may depend
on  time or  not.   In  the above example  the  flow does
depend on time, and this dependence is determined in
real time as a result of the system’s input. 
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Oscillator as two-dimensional flow

As  another  preliminary  example,  a  nonlinear  harmonic
oscillator  may  be  realized  as  a  two-variable  dynamical
system whose state evolves in time according to these
equations:

x ' 1=−k x2+(1−x1
2−x2

2) x1

x ' 2=k x1+(1−x1
2−x2

2)x2

The associated vector field is shown in Figure 2.

Figure 2. A sinusoidal oscillator realized as a two-dimensional dynamical
system. The circular path is the limit cycle of the oscillator.  Points that
do not lie on the circle (except the origin) spiral inward or outward to
the limit cycle.

This type of oscillator may be forced by one or two other
time-varying functions by adding them to the expressions
above,  and this  can give  rise  to  some interesting  non-
linear behaviors.  As a self-contained system, though, it
has a limited range of  potential behaviors.  In general,
dynamical systems whose phase space is a line or plane
cannot exhibit the chaotic behaviors for which they are
usually studied and used.

The  best-known  example  of  a  chaotically  behaving
dynamical  system  is  the  Lorenz  attractor whose  phase
space is three dimensional.  However, as we will see in
the  next  section,  non-periodic,  apparently  chaotic
behavior can also be realized in two-dimensional phase
spaces; but for this to be possible their topology must be
richer than that of a plane or sphere.

Coupled oscillator pair

To properly enjoy the following treatment the reader is
invited to listen to a piece by Pauline Oliveros,  Bye Bye
Butterfly (1965), realized in the San Francisco Tape Music
Center using equipment designed by Donald Buchla.  The
synthetic  sounds  are  made  using  an  “oscillator”  (as
Oliveros described it)  but  to the ear  it  is  more than a
simple  oscillator  and  is  probably  an  early  version  of
Buchla’s  later  dual  oscillator  module  in  which  one
oscillator is synchronized by a second one.  The circuit’s
behavior  is  quite  complex  and  hard  to  describe
completely,  but  a  simple  version  can  be  constructed
abstractly as a dynamical system with a two-dimensional
state space which is topologically a torus.

To synchronize one oscillator (call it A) to another one (B),
we assign each of them its own frequency, but whenever
B reaches a particular phase in its cycle (which we can
label as “phase zero”), we reset the phase of A.  In the
simplest  case,  called  hard  synchronization (or  “hard
sync”), the phase of A is always set exactly the same (also
to zero as we will consider it) each time B cycles, so that
the result has the periodicity of B (although the timbre
depends strongly on the frequencies of both A and B).

In the more complicated and interesting case called sof
synchronization, the phase of A is made to move quickly
toward zero when B’s phase passes through zero, but not
so quickly as to necessarily reach it.  The phase of A may
be chosen always to move forward, always backward, or
in  a  direction  that  depends  on  the  phase  itself;  for
instance, forward if more than halfway to the next zero
phase or backward otherwise.

The two-oscillator system can be set up as a dynamical
system with only two state variables, equal to the phases
of  the  two oscillators.   If  the  two oscillators  are  each
running  freely  (not  coupled  or  synced  together)  the
vector field is uniform (constant) over the entire phase
space, as shown in Figure 3.
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Figure 3. Phase space representation of a pair of uncoupled oscillators.
Each  phase  ranges  from  -0.5  to  0.5.  The  vector  field  (the  “flow”  is
uniform. Its two components are the frequencies of the oscillators.

The  state  of  the pair  of  oscillators  propagates  along  a
straight path that wraps around each time it reaches an
edge of the square.  (More precisely, the two sides of the
phase space should be considered as the same points,
and the top should  be considered as  the same as  the
bottom.  Seen this way, the phase space is a torus and
the path is continuous since the dotted segments each
extend from a point to itself.)

We  can  now  introduce  interactions  between  the  two
oscillators by making the flow non-uniform, so that the
magnitude or direction of the flow differs from point to
point.  For  example,  to soft-synchronize the oscillator A

(whose  phase  is  x1 )  to  B,  we  can  change  the

frequency of A to aim it toward phase zero in a region
where the phase of B is near zero.  Outsize this region the
flow remains uniform as before.  This is shown in Figure
4.

Figure  4.  A  Soft-synchronized  oscillator  pair  as  a  dynamical  system
whose  phase  space  is  a  torus.   Inside  the  region  between  the  two
dotted lines the phase of the first oscillator is pushed toward zero.

This system can make a range of interesting and musically
useful, non-periodic sounds.  The sounds vary according
to: the frequencies of the two oscillators, the size of the
region in which the second oscillator affects the first, the
strength of the correction of the phase, and when and
whether to push the phase of the first oscillator forward
or backward toward zero.  Also, it  is straightforward to
generalize  the  system  further.   For  example,  the  two
oscillators  can  each  be  soft-synchronized  to  the  other,
and/or  there  may  be  three  or  more  oscillators  in  the
system.

Wormholes in flat space

Another possible approach was developed in an earlier
paper of mine (Puckette 2015), Here I’ll describe it in a
simpler and more useful form than I was able to at the
time.  We start again with a two-dimensional phase space
configured  as  a  torus,  but  instead  of  making  the flow
non-uniform  within  it,  we  introduce  one  or  more
wormholes in the space.  These are areas that are not
used  but,  instead,  directly  jumped  over  whenever  the
path reaches them.  One of the simplest possibilities is to
specify a rectangular region in the phase space, arranging
the phase so that the rectangle is centered as shown in
Figure  5.    When  the  path  (which  is  assumed  to  be
traveling in the northeast direction) arrives at an edge of
the rectangle,  it  jumps discontinuously to the opposite
point  and  then  continues  as  before.  Conceptually  this
need not be considered a discontinuity because we can
suppose that the space itself is connected together in this
way.

Figure 5.  A phase space with a rectangular wormhole in the shape of a
rectangle.  The vector field is uniform, but whenever the state would
enter  the  wormhole,  instead  it  jumps  to  the  diametrically  opposite
point. 

As  with  the  previous  system,  this  one  can  readily  be
generalized to more dimensions.  This is the sound source
for a collaborative piece I perform with composer Kerry
Hagan titled Hack Lumps, using three dimensions and six
numerical controls to set each of the three frequencies
and the three dimensions of the wormhole (which is then
in the shape of a rectangular box)..  If any dimension of
the box is zero the three oscillators sound independently,
and their interconnectedness increases (and the stability
of the sound typically decreases) as the size of the box is
increased.

Triangular pool table

Taking  the  pair  of  oscillators  as  a  point  of  departure
again, we proceed in a different direction by analogy with
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the trajectory of a billiards (pool) ball on a table in the
shape  of  an  isosceles  right  (45-45-90-degree)  triangle.
Assuming  perfect  reflections  and  no  friction,  the  ball
takes  a  path  that  is  the  same  as  that  of  the  two
independent oscillators, as can be seen by dividing the
square representing the phase space into eight octants as
shown in Figure 6.  The solid path shows a reflecting path
within  one  of  the  eight  triangles,  corresponding  to  a
straight-line path through a phase space eight times as
large.  Depending on which of the eight triangles a point
is  in,  we  can  deduce  not  only  where  it  is  within  the
triangle, but also in which of eight possible directions it is
traveling  (assuming  the  8  reflected  directions  are
distinct.)

Figure  6.  A  Soft-synchronized  oscillator  pair  as  a  dynamical  system
whose phase space is a torus.  The dotted line shows the path through
phase space and the solid line shows the corresponding path through
one of the triangles.

If,  however,  the  triangle  has  any  other  shape  (except
equilateral,  in which case a similar reflection argument
holds), the system becomes much harder to analyze and
start to exhibit chaotic behavior.  As in the case of the
coupled oscillators, the chaotic behavior can be made to
closely  resemble  the  uncoupled  case  or  diverge  wildly
from it at will.

The  phase  space  here  is  three-dimensional:  to
understand where we are in the system we need to know
the  position  (two  independent  coordinates)  and  the
velocity  vector  (one  coordinate  because  the  speed
remains constant and only the direction varies).  Points
on the  edge of the triangle (with a given direction) are
identified  with  the  same  point  and  the  reflected
direction.

Realizing the sound

In general, an oscillator’s phase is not heard directly as
sound, but  instead  determines  the  location  in  a

waveform.   In  cases  where  the phase  space is  higher-
dimensional, we can use any function of the phase space
(although there will in general be smoothness conditions
to avoid foldover if the output is a sampled audio signal.)
In Hack Lumps (using the wormhole technique), we chose
to output three signals, each an even function of one of
the three phases, equal to zero over the entire wormhole
region (the function is therefore changed as a function of
the size of the wormhole).

In  all  the  cases  shown,  a  powerful  simplification  is
available that relieves us of the necessity to numerically
solve  the differential  equations,  since all  the paths are
straight lines, traveled at uniform velocities, except at the
points where they intersect a boundary (which itself is a
straight line or a plane in our examples.)  We need only
make one computation each time a boundary is reached,
to find the new velocity and the time at which the next
boundary  is  to  be  hit,  and  then  interpolate  linearly
between  the  breakpoints  obtained  this  way.   In  some
cases (particularly the triangular pool table) more than
one  breakpoint  may  be  hit  between  two  consecutive
audio samples.
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